
SANDIA REPORT
SAND2006-2081
Unclassified Unlimited Release
Printed April 2006

Multilinear operators for higher-order
decompositions

Tamara G. Kolda

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

SAND2006-2081
Unclassified Unlimited Release

Printed April 2006

Multilinear operators for higher-order

decompositions

Tamara G. Kolda
Computational Science and Mathematics Science Research Department

Sandia National Laboratories
Livermore, CA 94551-9159

tgkolda@sandia.gov

Abstract

We propose two new multilinear operators for expressing the matrix compositions that are
needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator,
which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplica-
tion for every mode of a given tensor and can be employed to consisely express the Tucker
decomposition. The second operator, which we call the Kruskal operator, is shorthand for the
sum of the outer-products of the columns of N matrices and allows a divorce from a matricized
representation and a very consise expression of the PARAFAC decomposition. We explore the
properties of the Tucker and Kruskal operators independently of the related decompositions.
Additionally, we provide a review of the matrix and tensor operations that are frequently used
in the context of tensor decompositions.

3

Contents

1 Introduction . 5
2 Notation . 5
3 Review of standard operations . 7

3.1 Matrix operations . 7
3.2 The outer product of vectors . 8
3.3 Tensor multiplication: the n-mode product . 8
3.4 Matricization of a tensor . 10
3.5 Norm and inner product of a tensor . 12

4 The Tucker operator . 13
4.1 Definition of the Tucker operator . 13
4.2 Tucker operator properties . 13
4.3 The Tucker decomposition . 15
4.4 Finding an optimal rank-(J1, J2, . . . , JN) approximation . 16
4.5 Derivatives . 17

5 The Kruskal operator . 18
5.1 Definition of the Kruskal operator . 19
5.2 Kruskal operator properties . 19
5.3 The PARAFAC decomposition . 20
5.4 Computing the PARAFAC decomposition . 21
5.5 Derivatives of the Kruskal operator . 22

6 Conclusions . 23
References. 24

Appendix

A LATEX formatting . 27

Figures

1 Three-way tensors. 6
2 Fibers of a 3rd-order tensor. 6
3 Slices of a 3rd-order tensor. 7
4 Illustration of mode-1 matricization—the column fibers are aligned to form a matrix. 11
5 Illustration of the Tucker decomposition: X = JG ;A,B,CK . 15
6 Illustration of the PARAFAC decomposition: X = JA,B,CK . 21

Algorithms

1 Tucker: Higher Order Orthogonal Iteration . 18
2 PARAFAC: Alternating Least Squares (ALS) . 22

4

Multilinear operators for higher-order

decompositions

1 Introduction

Higher-order tensor decompositions are in frequent use today in a variety of fields including psycho-
metrics [43, 12, 19], chemometrics [6, 37], image analysis [45, 36, 46], graph analysis [27, 26], signal
processing [13, 33], and much more [1, 38, 32]. The two most commonly used decompositions are
Tucker [43] and PARAFAC (also known as CANDECOMP) [12, 19], which can be thought of as
higher-order generalizations of the matrix singular value decomposition.

Unfortunately, the notation for these decompositions is not standardized because there are no
operators to denote the multilinear compositions of matrices that are needed. Kiers [24], Harshman
[20], and Bader and Kolda [8] have provided guidance on general notation for higher-order operations
but did not focus on notation for higher-order decompositions. Typically, these decompositions
are written in terms of elementary tensor operations (like n-mode multiplication) or by using a
matricized representation. The difficulty is that this notation is non-intuitive and obscures the
multilinear properties of the underlying operations.

To remedy this problem, we propose two new operators: a Tucker operator, which denotes a series
of n-mode multiplication operations, and a Kruskal operator, which is a special case of the Tucker
operator and useful for the PARAFAC decomposition. In this paper, we define these operators,
examine their properties, and demonstrate how their use enables a better understanding of the
Tucker and PARAFAC decompositions.

For example, the Tucker operator simplifies the notation for the Tucker decomposition. Let
X ∈ RI×J×K be a third-order tensor. It will turn out that

X = JG ;A,B,CK replaces xijk =
R∑

r=1

S∑
s=1

T∑
t=1

grst airbjsckt.

The third-order tensor G ∈ RR×S×T is called the core array, and the matrices A ∈ RI×R, B ∈ RJ×S ,
and C ∈ RK×T are called the factors. Likewise, the Kruskal operator simplifies expression of the
PARAFAC decomposition. Here it turns out that

X = JA,B,CK replaces xijk =
R∑

r=1

airbjrckr.

In the PARAFAC case, there is no core array, only the factor matrices A ∈ RI×R, B ∈ RJ×R,
and C ∈ RK×R, which are now constrained to have equal numbers of columns. Kruskal proposed
identical PARAFAC notation with the exception of the type of bracket; he used [A,B,C] [29].

The paper is organized as follows. Notation for n-way arrays can be complex, so we explain ours
in §2. We review standard matrix and tensor operations and their properties in §3. The Tucker
operator is covered in §4 and the Kruskal operator in §5. Lesser-known LATEX formatting commands
that are necessary to reproduce the symbols in this paper are provided in the appendix.

2 Notation

Multiway arrays (a.k.a. tensors) are denoted by boldface Euler script letters, e.g., X. The order
of a tensor is the number of dimensions, also known as ways or modes. Figure 1(a) illustrates a

5

three-way tensor. We use I to denote the identity tensor with ones on the superdiagonal and zeros
elsewhere; see Figure 1(b).

�
�

�
�

�
�

i
=

1
,

.
.

.
,

I

j = 1, . . . , J k
=

1,
. .

. ,
K

(a) X ∈ RI×J×K

�
�

�
�

�
�

1 1 1 1 1 1 1 1 1

(b) I ∈ RI×I×I

Figure 1. Three-way tensors.

Matrices are denoted by boldface capital letters, e.g., A. We use I to denote the identity matrix.
Vectors are denoted by boldface lowercase letters, e.g., a. Scalars are denoted by lowercase letters,
e.g., a. We have attempted to keep this notation consistent. Thus, the ith entry of a vector a is
denoted by ai, the jth column of A is denoted by a:j , the ith row by ai:, element (i, j) by aij , and
element (i, j, k) element of a 3-way tensor X is denoted by xijk.

The higher order analogue of matrix rows and columns are called fibers. A matrix column is a
mode-1 fiber and a matrix row is a mode-2 fiber. For a third order tensor, we have column, row,
and tube fibers, which are denoted by x:jk, xi:k, and xij:, respectively; see Figure 2. For orders
higher than three, the fibers no longer have special names. We always assume that fibers are column
vectors.

(a) Columns: x:jk (b) Rows: xi:k

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(c) Tubes: xij:

Figure 2. Fibers of a 3rd-order tensor.

For third-order tensors, it is often useful to consider the two-dimensional slices. Figure 3 shows
the horizontal, lateral, and frontal slides of a third-order tensor X, denoted by Xi::, X:j:, and X::k,
respectively.

Finally, indices typically range from 1 to their capital version, e.g., i = 1, . . . , I. Multiple indices
have subscripts, e.g., in = 1, . . . , In. Sets are denoted in calligraphic font, e.g., R = {r1, r2, . . . , rP }.
We denote a set of indexed indices by IR = {Ir1 , Ir2 , . . . , IrP

}.

6

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(a) Horizontal: Xi::

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(b) Lateral: X:j: (c) Frontal: X::k

Figure 3. Slices of a 3rd-order tensor.

3 Review of standard operations

We present a comprehensive survey of standard operations and concepts that are used in multiway
analysis.

3.1 Matrix operations

The Kronecker product (also sometimes known as the tensor product), Khatri-Rao product, and
Hadamard product are matrix operations that we use in this paper.

The Kronecker product of matrices A ∈ RI×J and B ∈ RK×L is denoted by A ⊗ B and the
(IK)× (JL) result is defined by

A⊗B =

a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

 .

Certain of its properties (listed in Proposition 3.1) will prove useful in our discussions. Van Loan
[44] provides a more general overview of the Kronecker product and its uses.

Proposition 3.1 (Kronecker product [44]) Let A ∈ RI×J ,B ∈ RK×L. Then

(a) (A⊗B)(C⊗D) = AC⊗BD, and
(b) (A⊗B)† = A† ⊗B†.

The Khatri-Rao product [31, 35, 10, 37] is the columnwise Kronecker product. The Khatri-Rao
product of matrices A ∈ RI×K and B ∈ RJ×K is denoted by A�B and its (IJ)×K result is defined
by

A�B =
[
a:1 ⊗ b:1 a:2 ⊗ b:2 · · · a:K ⊗ b:K

]
.

We will see later that the Khatri-Rao product is very important for expressing the PARAFAC
decomposition. Observe that the matrices in a Khatri-Rao product all have the same number of
columns. Furthermore, if a and b are vectors, then the Khatri-Rao and Kronecker products are
identical, i.e., a ⊗ b = a � b. The Khatri-Rao product has properties that involve the Hadamard

7

product, which is the elementwise matrix product; i.e., the Hadamard product of matrices A and B,
both of size I × J , is denoted by A ∗B and its I × J result is defined by

A ∗B =

a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ

 .

In particular, the pseudo-inverse of a Khatri-Rao product has a special form that involves the
Hadamard product.

Proposition 3.2 (Khatri-Rao product [37]) Let A ∈ RI×L, B ∈ RJ×L, C ∈ RK×L. Then

(a) A�B�C = (A�B)�C = A� (B�C),
(b) (A�B)T(A�B) = ATA ∗BTB, and
(c) (A�B)† =

(
(ATA) ∗ (BTB)

)† (A�B)T.

3.2 The outer product of vectors

The outer product of two vectors yields a matrix and is typically written as X = abT. To extend
the outer product to higher dimensions, we cannot reply solely on the transpose operator; instead,
we use the symbol ◦ to denote the outer product, so we write X = a ◦ b for the outer product of
two vectors. Let N = {1, . . . , N} and a(n) ∈ RIn for all n ∈ N. Then the outer product of these N
vectors is an Nth-order tensor and defined elementwise as(

a(1) ◦ a(2) ◦ · · · ◦ a(N)
)

i1i2···iN

= a(1)i1a
(2)i2 · · · a(N)iN for 1 ≤ in ≤ In, n ∈ N.

Sometimes the notation ⊗ is used (see, e.g., [25]), but we reserve that notation in this paper for the
matrix Kronecker product.

3.3 Tensor multiplication: the n-mode product

The n-mode product [14] defines multiplication of a tensor by a matrix in mode n. Though other
types of tensor multiplication exist, see, e.g., [8], we only need to consider the n-mode product in
this paper.

The n-mode (matrix) product of a tensor Y ∈ RJ1×J2×···×JN with a matrix A ∈ RI×Jn is denoted
by Y×n A. The result is of size J1× · · · × Jn−1× I × Jn+1× · · · × JN and is defined elementwise as

(Y×n A)j1···jn−1i jn+1···jN
=

Jn∑
jn=1

yj1j2···jN
aijn

.

There are many ways of considering n-mode multiplication. For example, let Y ∈ RI×J×K ,
B ∈ RL×J , and X = Y ×2 B. One interpretation is that each mode-2 fiber of X is the result of
multiplying the corresponding mode-2 fiber of Y by B:

xi:k = Byi:k for each i = 1, . . . , I, k = 1, . . . ,K.

Example 3.3 (n-mode matrix product) Let Y be the following 3× 4× 2 tensor:

Y::1 =

1 4 7 10
2 5 8 11
3 6 9 12

 , Y::2 =

13 16 19 22
14 17 20 23
15 18 21 24

 . (1)

8

Let A be the following 2× 3 matrix:

A =
[
1 2 3
4 5 6

]
. (2)

Note that the number of columns in A is equal to the size of mode 1 of Y. Thus we can compute
Y×1 A, which is of size 2× 4× 2 and

(Y×1 A)::1 =
[
22 49 76 103
28 64 100 136

]
, (Y×1 A)::2 =

[
130 157 184 211
172 208 244 280

]
.

Proposition 3.4 (n-mode matrix product [14]) Let Y ∈ RJ1×J2×···×JN be an N -way tensor.

(a) Given matrices A ∈ RIm×Jm , B ∈ RIn×Jn ,

Y×m A×n B = (Y×m A)×n B = (Y×n B)×m A (m 6= n).

(b) Given matrices A ∈ RI×Jn , B ∈ RK×I ,

Y×n A×n B = Y×n (BA).

(c) Moreover, if A ∈ RI×Jn with full column rank, then

X = Y×n A ⇒ Y = X×n A†.

(d) Consequently, if A ∈ RI×Jn is orthonormal, then

X = Y×n A ⇒ Y = X×n AT.

Example 3.5 Here we illustrate Proposition 3.4(d). Let Y be given by (1). Define the orthonormal
matrix

C =

0.58 0.00
0.58 −0.71
0.58 0.71

 .

Then X = Y×3 C is

X::1 =

0.58 2.31 4.04 5.77
1.15 2.89 4.62 6.35
1.73 3.46 5.20 6.93

 ,

X::2 =

−8.62 −9.00 −9.39 −9.78
−8.74 −9.13 −9.52 −9.91
−8.87 −9.26 −9.65 −10.04

 ,

X::3 =

 9.77 13.62 17.48 21.33
11.05 14.91 18.76 22.61
12.34 16.19 20.05 23.90

 .

We have then that Z = X×3 CT is

Z::1 =

1 4 7 10
2 5 8 11
3 6 9 12

 , Z::2 =

13 16 19 22
14 17 20 23
15 18 21 24

 .

In other words, we have recovered the original Y.

9

3.4 Matricization of a tensor

Especially in computations, it is important to be able to transform the indicies of a tensor so that it
can be represented as a matrix, and vice versa [8]. In order to fully capture all the salient information,
we need to explicitly track three pieces of information in addition to the data itself: the size of the
tensor, the modes that are mapped to the rows of the matrix, and the modes that are mapped to
the columns of the matrix.

The matricization of a tensor X ∈ RI1×I2×···×IN is defined as follows. Let the ordered sets
R = {r1, . . . , rL} and C = {c1, . . . , cM} be a partitioning of the modes N = {1, . . . , N}. Recall that
IN denotes the size of the tensor: {I1, . . . , IN}. The matricized tensor can then be specified by

X(R×C : IN) ∈ RJ×K with J =
∏
n∈R

In and K =
∏
n∈C

In.

The indices in R are mapped to the rows and the indices in C mapped to the columns. Specifically,(
X(R×C : IN)

)
jk

= xi1i2···iN

with

j = 1 +
L∑

`=1

[
(ir`
− 1)

`−1∏
`′=1

Ir`′

]
and k = 1 +

M∑
m=1

[
(irm

− 1)
m−1∏
m′=1

Irm′

]
.

It may be easier to understand matriticization in MATLAB notation. Suppose X is a multidi-
mensional array, and let the sets R and C be defined. Then the following code converts to a matrix
and back again to a tensor.

X = rand(5,6,4,2); R = [2 3]; C = [4 1];
I = size(X); J = prod(I(R)); K = prod(I(C));
Y = reshape(permute(X,[R C]),J,K); % convert X to matrix Y
Z = ipermute(reshape(Y,[I(R) I(C)]),[R C]); % convert back to tensor

Note that we must explicitly recall the sizes of the original tensor dimensions in order to convert
the matrix back to a tensor. This is generally not called out explicitly in notation. For example, if
R = {1, 2} and C = {3, . . . , N}, then X(R×C : IN) is more typically written as

XI1I2×I3I4···IN or X(I1I2×I3I4···IN).

In other words, the size of the original tensor is generally treated implicitly. However, we will see
that explicitly listing the sizes (i.e., the argument following the colon) proves useful in certain cases
such as Proposition 3.7(b) and Proposition 3.7(d).

An important special case is whenever R is a singleton. This means that the fibers of mode
n are aligned as the columns of the resulting matrix. The n-mode matricization of a tensor X ∈
RI1×I2×···×IN is a special case of matricization given by

X(n) ≡ X(R×C : IN) with R = {n} and C = {1, . . . , n− 1, n + 1, . . . , N}.

Here we adhere to the standard notation. See also the illustration in Figure 4.

In general, the order of the modes within C is irrelevant so long as all operations with the
transformed modes are consistent. Different authors use different orderings for the columns of the
resulting matrix; see, e.g., [14] versus [24].

10

X X(1)

Figure 4. Illustration of mode-1 matricization—the column fibers are
aligned to form a matrix.

In addition to converting a tensor to a matrix, it can also be converted to a vector, which is just
a special case of matricization where all the modes become row modes; i.e., the vectorized tensor
X ∈ RI1×I2×···×IN is given by

vec(X) ≡ X(N×∅ : IN).

Example 3.6 (Matricization) Let Y be given by (1). Then

Y({3,1}×{2} : {3,4,2}) =

1 4 7 10
13 16 19 22
2 5 8 11
14 17 20 23
3 6 9 12
15 18 21 24

 ,

Y(1) = Y({1}×{2,3} : {3,4,2}) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

 ,

and

vec(Y) = Y(N×∅ : IN) =
[
1 2 · · · 24

]T
.

Converting a tensor to a matrix in useful both computationally and theoretically because there
are useful connections between the n-mode matrix product, matricization, and Kronecker products.

Proposition 3.7 Let Y ∈ RJ1×J2×···×JN and N = 1, . . . , N .

(a) If A ∈ RI×Jn . Then
X = Y×n A ⇔ X(n) = AY(n).

(b) Let A(n) ∈ RIn×Jn for all n ∈ N. If R = {r1, . . . , rL} and C = {c1, . . . , cM} partition N, then

X = Y×1 A(1) ×2 A(2) · · · ×N A(N) ⇔

X(R×C : JN) =
(
A(rL) ⊗ · · · ⊗A(r1)

)
Y(R×C : IN)

(
A(cM) ⊗ · · · ⊗A(c1)

)T

(c) Consequently, if A(n) ∈ RIn×Jn for all n ∈ N, for any specific n ∈ N we have

X = Y×1 A(1) ×2 A(2) · · · ×N A(N) ⇔

X(n) = A(n)Y(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T

.

11

(d) Moreover, if C = {c1, . . . , cM} ⊆ N and A(n) ∈ RIn×Jn for n ∈ C, defining R = N \ C yields

X = Y×c1 A(c1) ×c2 A(c2) · · · ×cM
A(cM) ⇔

X(R×C : KN) = Y(R×C : IN)

(
A(cM) ⊗ · · · ⊗A(c1)

)T

with Kn ≡

{
In if n ∈ C

Jn if n ∈ R
.

3.5 Norm and inner product of a tensor

The norm and inner product are most easily thought of in terms of the vectorized tensor. The inner
product of two tensors X,Y ∈ RI1×I2×···×IN is given by

〈X,Y 〉 = vec(X)Tvec(Y) =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1i2···iN
yi1i2···iN

.

The norm of a tensor X ∈ RI1×I2×···×IN is given by

‖X ‖2 = 〈X,X 〉 =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

x2
i1i2···iN

.

The norm of a tensor can be transformed to a matrix or vector norm by using the matricized or
vectorized version of the tensor (Proposition 3.8). Moreover, the norm of the difference of two tensors
can be rewritten to instead involve the inner product of the two tensors (Proposition 3.9). The inner
product of two rank-1 tensors can be simplified to be the product of the individual dot products of
the components (Proposition 3.10). Finally, Mode-n multiplication commutes with respect to the
inner product (Proposition 3.11).

Proposition 3.8 Let X ∈ RI1×I2×···×IN and N = {1, . . . , N}.

(a) Let sets R and C be a partitioning of N. Then ‖X ‖ =
∥∥X(R×C : IN)

∥∥
F

.

(b) Let n ∈ N. Then ‖X ‖ =
∥∥X(n)

∥∥
F

.
(c) ‖X ‖ = ‖ vec(X) ‖2 .

Proposition 3.9 Let X,Y ∈ RI1×I2×···×IN . Then

‖X− Y ‖2 = ‖X ‖2 − 2〈X,Y 〉 − ‖Y ‖2 .

Proposition 3.10 Let X,Y ∈ RI1×I2×···×IN with X = a(1) ◦ a(2) ◦ · · · ◦ a(N) and Y = b(1) ◦ b(2) ◦
· · · ◦ b(N). Then

〈X,Y 〉 =
N∏

n=1

〈a(n),b(n) 〉.

Proposition 3.11 Let X ∈ RI1×···×In−1×J×In+1×···×IN , Y ∈ RI1×···×In−1×K×In+1×···×IN , and A ∈
RJ×K . Then

〈X,Y×n A 〉 = 〈X×n AT,Y 〉.

An interesting corollary of the previous result is that mode-n multiplication of a tensor with an
orthogonal matrix does not change its norm.

Proposition 3.12 Let X ∈ RI1×I2×···×IN and let Q be a J × In orthonormal matrix. Then

‖X ‖ = ‖X×n Q ‖ .

12

4 The Tucker operator

Now that we have reviewed essential matrix and tensor operations, we can proceed to defining our
multilinear operators. In this section, we consider the Tucker operator and its application to the
Tucker decomposition.

4.1 Definition of the Tucker operator

The Tucker operator is an efficient representation for multi-mode multiplication, which we formally
define as follows.

Definition 4.1 Let Y ∈ RJ1×J2×···×JN and N = {1, . . . , N}. Suppose we have matrices A(n) ∈
RIn×Jn for n ∈ N. Then the Tucker operator is defined as:

JY ;A(1),A(2), . . . ,A(N)K ≡ Y×1 A(1) ×2 A(2) · · · ×N A(N). (3)

The result is of size I1 × I2 × · · · × IN .

The Tucker operator can be defined on a subset of modes {k1, . . . , kP } ⊂ N via a subscript on
the operator as follows:

JY ;A(k1),A(k2), . . . ,A(kP)K{k1,...,kP } ≡ Y×k1 A(k1) ×k2 A(k2) · · · ×kP
A(kP).

Grigorascu and Regalia [18] have proposed notation for the same concept as the Tucker operator,

A(1) Y
? A(2) Y

? · · ·Y? A(N),

which they refer to as the weighted Tucker product (the unweighted version has Y = I, the identity
tensor). Note that the case of using only a subset of modes is equivalent to replacing the missing
modes with Jn × Jn identity matrices.

4.2 Tucker operator properties

The properties of the Tucker operator follow directly from the properties of n-mode multiplication
(see §3.3).

Proposition 4.2 Let Y ∈ RJ1×J2×···×JN and let N = {1, . . . , N}.

(a) Given matrices A(n) ∈ RIn×Jn , B(n) ∈ RKn×In for all n ∈ N, we have

J JY ;A(1), · · · ,A(N)K ;B(1), · · · ,B(N)K = JY ;B(1)A(1), · · · ,B(N)A(N)K

(b) Given matrices A(n) ∈ RIn×Jn for all n ∈ N with full column rank, we have

X = JY ;A(1), · · · ,A(N)K⇒ Y = JX ;A(1)†, · · · ,A(N)†K

(c) Given orthonormal matrices A(n) ∈ RIn×Jn for all n ∈ N, we have

X = JY ;A(1), · · · ,A(N)K⇒ Y = JX ;A(1)T, · · · ,A(N)TK

13

Proof. Part (a) follows from the definition of the Tucker operator and the properties of mode-
n multiplication (Proposition 3.4(b)). Likewise, Parts (b) and (c) follow from other properties of
mode-n multiplication (Proposition 3.4(c) and Proposition 3.4(d), respectively). �

The Tucker operator also has various expressions in terms of matricized tensors and the Kronecker
product.

Proposition 4.3 Let Y ∈ RJ1×J2×···×JN and N = 1, . . . , N .

(a) Let A(n) ∈ RIn×Jn for all n ∈ N. If R = {r1, . . . , rL} and C = {c1, . . . , cM} partition N, then

X = JY ;A(1),A(2), · · · ,A(N)K ⇔

X(R×C : JN) =
(
A(rL) ⊗ · · · ⊗A(r1)

)
Y(R×C : IN)

(
A(cM) ⊗ · · · ⊗A(c1)

)T

(b) Consequently, if A(n) ∈ RIn×Jn for all n ∈ N, for any specific n ∈ N we have

X = JY ;A(1),A(2), · · · ,A(N)K ⇔

X(n) = A(n)Y(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T

.

(c) Moreover, if C = {c1, . . . , cM} ⊆ N and A(n) ∈ RIn×Jn for n ∈ C, defining R = N \ C yields

X = JY ;A(c1),A(c2), · · · ,A(cM)KC ⇔

X(R×C : KN) = Y(R×C : IN)

(
A(cN) ⊗ · · · ⊗A(c1)

)T

with Kn ≡

{
Jn if n ∈ C

In if n ∈ R
.

Proof. The proof follows from the connections between the Tucker operator and n-mode mul-
tiplication (Proposition 4.2) and the connections between n-mode multiplication and matricization
(Proposition 3.7). �

Results such as these help to yield insight into the properties of the Tucker operator. Consider
the following proposition that says that the norm of a large tensor can be calculated by considering
a much smaller tensor.

Proposition 4.4 ([7]) Let Y ∈ RJ1×J2×···×JN and let N = {1, . . . , N}. Suppose we have matrices
A(n) ∈ RIn×Jn for all n ∈ N. Let the QR decomposition of each matrix be denoted by

A(n) = Q(n)R(n) for n ∈ N,

where Q(n) ∈ RIn×Jn is orthonormal and R(n) ∈ RJn×Jn is upper triangular. Then∥∥∥ JY ;A(1), . . . ,A(N)K
∥∥∥ =

∥∥∥ JY ;R(1), . . . ,R(N)K
∥∥∥ .

Proof. From the properties of the Tucker operator (Proposition 4.2(a)), the definition of the
Tucker operator (Definition 4.1), and the property that orthonormal matrices in n-mode multipli-
cation do not change the norm (Proposition 3.12), respectively, we have∥∥∥ JX ;A(1), . . . ,A(N)K

∥∥∥ =
∥∥∥ J JX ;R(1), . . . ,R(N)K ;Q(1), . . . ,Q(N)K

∥∥∥
=

∥∥∥(
JX ;R(1), . . . ,R(N)K

)
×1 Q(1) · · · ×N Q(N)

∥∥∥
=

∥∥∥ JX ;R(1), . . . ,R(N)K
∥∥∥ .

14

�

Consequently, suppose that we have a tensor X ∈ I1 × I2 × · · · × IN such that

X = JY ;A(1), . . . ,A(N)K.

If Jn � In, the norm of Y is the same as the much smaller tensor Z ∈ J1 × J2 × · · · × JN where

Z = JY ;R(1), . . . ,R(N)K.

4.3 The Tucker decomposition

The Tucker decomposition [43] of a tensor X ∈ RI1×I2×···×IN is given by

X = JG ;A(1),A(2), . . . ,A(N)K. (4)

Here A(n) ∈ RIn×Jn and G ∈ RJ1×J2×···×JN . If G is the same size as X, the Tucker decomposition
is simply a change of basis. More often, we are interested in using a change of basis to compress
X, thereby resulting in a tensor G that is smaller than X; see Figure 5. The n-rank of a tensor X

is defined as the rank of X(n) [14]. If we let Jn be the n-rank of X for each n, the we can always
reproduce X exactly. Otherwise, the “decomposition” may not be exact but instead produce an
approximation to the tensor.

��

����

XI

J

K

=
��

����

GR

S

T
AI

R

BJ

S

CK

T

Figure 5. Illustration of the Tucker decomposition: X = JG ;A,B,CK

Tucker [43] dealt only with 3-way arrays but the basic principals have since been extended to N -
way arrays. For the three-way case, the terms Tucker3, Tucker2, and Tucker1 have been coined [28]:
Tucker3 is the decomposition presented here with N = 3 (three modes are free), Tucker2 constrains
one mode to be the identity matrix (so that 2 modes are free), and Tucker1 constrains two modes
to be identity matrices (1 mode is free).

In general, the Tucker decomposition is not unique. For example, let B be an orthogonal matrix
of size J1 × J1. Then, recalling Proposition 4.2(a),

X = JG ;A(1), . . . ,A(N)K = JG×1 B ;A(1)B, . . . ,A(N)K.

Many researchers have considered the problems of rotating the core G to something that is more
interpretable; see, e.g., [21, 22, 23, 2].

The new Tucker operator replaces the following options for expressing the Tucker decomposition:

• Mode-n multiplication: X = G×1 A(1) ×2 A(2) · · · ×N A(N),
• Matricized form: X(n) = A(n)G(n)

(
A(n) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)
,

• Outer products: X =
∑J1

j1=1

∑J2
j2=1 · · ·

∑JN

jN=1 gj1j2···jN
a(1)

:j1
◦ a(2)

:j2
◦ · · · ◦ a(N)

:jN
, or

• Elementwise: xi1i2···iN
=

∑J1
j1=1

∑J2
j2=1 · · ·

∑JN

jN=1 gj1j2···jN
a
(1)
i1j1

a
(2)
i2j2
· · · a(n)

iN jN
.

15

4.4 Finding an optimal rank-(J1, J2, . . . , JN) approximation

Given a tensor X and a desired rank of the core tensor G, we can consider the problem of computing
a Tucker decomposition with the least amount of error. The goal is to find the best possible Tucker
decomposition (4) given a tensor X or, in other words, to solve

min
G,A(1),...,A(N)

∥∥∥X− JG ;A(1), . . . ,A(N)K
∥∥∥ (5)

subject to G ∈ RJ1×J2×···×JN

A(n) ∈ RIn×Jnorthonormal, n = 1, . . . , N.

We assume Jn is strictly less than the n-rank of X in at least one mode — otherwise the solution is
trivial and exact. We reformulate the problem so that G is eliminated by considering the problem
of finding the optimal G given that all the matrices A(n) are fixed. We present an alternative proof
that explicitly uses the properties of the Tucker operator.

Theorem 4.5 (Theorems 4.1 and 4.2 in [14]) Let X ∈ RI1×I2×···×IN . Assuming the matrices
A(n) are fixed, the optimal G for (5) is

G = JX ;A(1)T, . . . ,A(N)TK (6)

Consequently, the optimal matrices A(n) for (5) are given by the solution to

max
A(1),...,A(N)

∥∥∥ JX ;A(1)T, . . . ,A(N)TK
∥∥∥ . (7)

Proof. From Proposition 4.3(a) with R = {1, . . . , N}, we can rewrite the norm in matrix form:∥∥∥X− JG ;A(1)T, . . . ,A(N)TK
∥∥∥ =

∥∥∥ vec(X)−
(
A(N) ⊗ · · · ⊗A(1)

)
vec(G)

∥∥∥
This is a classic linear least squares problem, and the solution is given by

vec(G) =
(
A(N) ⊗ · · · ⊗A(1)

)†
vec(X).

By Proposition 3.1(b) and the fact that the matrices are orthonormal, we can conclude

vec(G) =
(
A(N)T ⊗ · · · ⊗A(1)T

)
vec(X)

Equation (6) follows from Proposition 4.3(a), so we assume (6) holds for the remainder of the proof.

Next, from Proposition 3.9, we have∥∥∥X− JG ;A(1), . . . ,A(N)K
∥∥∥

= ‖X ‖2 − 2〈X, JG ;A(1), . . . ,A(N)K 〉+
∥∥∥ JG ;A(1), . . . ,A(N)K

∥∥∥2

.

From Proposition 3.11 and (6),

〈X, JG ;A(1), . . . ,A(N)K 〉 = 〈 JX ;A(1)T, . . . ,A(N)TK,G 〉 = ‖G ‖2

From Proposition 3.12, ∥∥∥ JG ;A(1), . . . ,A(N)K
∥∥∥ = ‖G ‖

16

Hence, ∥∥∥X− JG ;A(1), . . . ,A(N)K
∥∥∥ = ‖X ‖2 − ‖G ‖2 .

It follows that minimizing (6) is equivalent to maximizing ‖G ‖; hence, the claim. �

Consequently, from Theorem 4.5, the minimization problem (5) can be reformulated as:

max
A(1),...,A(N)

∥∥∥ JX ;A(1)T, . . . ,A(N)TK
∥∥∥ (8)

subject to A(n) ∈ RIn×Jn orthonormal , n = 1, . . . , N.

Next, we can consider the question of how to find each A(n) without making any assumptions
about the other factors, i.e., we solve the following problem.

max
A(n)

∥∥∥ JX ; I, . . . , I,A(n)T, I, . . . , IK
∥∥∥ (9)

subject to A(n) ∈ RIn×Jn orthonormal.

The objective function is equivalent to
∥∥X×n A(n)T

∥∥ =
∥∥A(n)TX(n)

∥∥. In matrix format, we can
see that the Jn leading left singular vectors of X(n) yield the optimal solution. If we solve for each
A(n) for n = 1, . . . , N in this manner, than we have what is has been popularized as the Higher-
Order Singular Value Decomposition (HO-SVD) [14]. Unlike its matrix counterpart, the HO-SVD
does not yield an optimal rank-J1, J2, . . . , JN approximation to X. However, it is a good starting
point for an alternating algorithm.

Consider next the problem of how to find the optimal A(n) given that all the other factors are
known and fixed, which yields the following subproblem for matrix n:

max
A(n)

∥∥∥ JX ;A(1)T, . . . ,A(N)TK
∥∥∥ (10)

subject to A(n) ∈ RIn×Jn orthonormal.

More simply, defining Z ≡ JX ;A(1)T, . . . ,A(n−1)T, I,A(n+1)T, . . . ,A(N)TK and B ≡ A(n), the prob-
lem becomes

max
B

∥∥Z×n BT
∥∥ ≡ ∥∥BTZ(n)

∥∥
F

(11)

subject to B ∈ RJn×In orthonormal.

The solution to this subproblem is easily realized via the matrix SVD of Z(n), i.e., setting the
columns of B to be the Jn leading left singular vectors of Z(n) yields the optimal solution.

This leads naturally an alternating algorithm [15, 28, 39] to compute an approximate Tucker
decomposition, shown in Algorithm 1.

4.5 Derivatives

Before we continue, we consider the derivatives of the Tucker operator. Let N = {1, . . . , N}, A(n) ∈
RIn×Jn , and G ∈ RJ1×J2×···×JN . Define a function F as the Tucker operator, i.e.,

F(G,A(1), . . . ,A(N)) = JG ;A(1), . . . ,A(N)K.

17

Algorithm 1 Tucker: Higher Order Orthogonal Iteration
in: Tensor X of size I1 × I2 × · · · × IN .
in: Desired rank of core: J1 × J2 × · · · × JN .
for n=1,. . . ,N do {initialization via HO-SVD}

A(n) ← Jn leading eigenvalues of X(n)XT
(n)

end for
while not converged do {main loop}

for n=1,. . . ,N do
Z← JX ;A(1)T, . . . ,A(n−1)T, I,A(n+1)T, . . . ,A(N)TK
A(n)T ← Jn leading eigenvalues of Z(n)ZT

(n)

end for
end while
G← JX ;A(1)T, . . . ,A(N)TK
out: G of size J1 × J2 × · · · × JN and orthonormal matrices A(n) of size In × Jn such that
X ≈ JG ;A(1), . . . ,A(N)K.

Consider the partial derivative of F with respect to G. The result is a 2N -way array such that(
∂F

∂G

)
i1i2···iN j1j2···jN

= a
(1)
i1j1

a
(2)
i2j2
· · · a(N)

iN jN
.

In matricized form, this is (
∂F

∂G

)
(I×J)

= A(N) ⊗A(N−1) ⊗ · · · ⊗A(1).

Consider the derivative of F with respect to A(n). The result is an (N + 2)-way array, such that(
∂F

∂A(n)

)
i1i2···iN injn

=

J1∑
j1=1

· · ·
Jn−1∑

jn−1=1

Jn+1∑
jn+1=1

· · ·
JN∑

jN=1

gj1j2···jN
a
(1)
i1j1
· · · a(n−1)

in−1jn−1
a
(n+1)
in+1jn+1

· · · a(N)
iN jN

.

Another way to see this is as follows. In matricized form, we have

F(n) = A(n)G(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗A(1)

)T

.

Thus, from matrix calculus (see, e.g., [17]), we have

∂F(n)

∂A(n)
=

[(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗A(1)

)
GT

(n)

]
⊗ I

where I is the In × In identity matrix.

5 The Kruskal operator

The Kruskal operator provides shorthand notation for the sum of the outer products of the columns
of a set of matrices. This turns out to be a special case of the Tucker operator where the core tensor is
the identity tensor. Unlike the Tucker operator, which can be written using n-mode multiplication,
there is no concise multidimensional representation for this special case. The result is that this
operation is usually expressed in matricized form, which tends to obscure its multidimensional
properties.

18

5.1 Definition of the Kruskal operator

The Kruskal operator is a special case of the Tucker operator (Definition 4.1) where the core tensor
G is the R×R× · · · ×R identity tensor and all the matrices A(n) have R columns.

Definition 5.1 Let N = {1, . . . , N}. Suppose we have matrices A(n) ∈ RIn×R for n ∈ N. Then the
Kruskal operator is defined as:

JA(1),A(2), . . . ,A(N)K ≡ JI ;A(1),A(2), . . . ,A(N)K, (12)

where I is the identity tensor, i.e., it has ones along the superdiagonal and zeros elsewhere.

See Figure 1(b) for an illustration of the identity tensor. We call this operator the Kruskal
operator since such an operator was proposed by Kruskal [29].

5.2 Kruskal operator properties

The properties of the Kruskal operator are much more interesting than those of the Tucker operator
because they do not always directly from the n-mode multiplication results.

The following proposition shows what happens when a Kruskal operator is the core tensor of a
Tucker operator, which can happen when compression is used as the first step in the calculation of
a PARAFAC decomposition [4].

Proposition 5.2 Let N = {1, . . . , N}. Suppose we have matrices A(n) ∈ RIn×R, B(n) ∈ RKn×In

for all n ∈ N. Then

J JA(1), · · · ,A(N)K ;B(1), · · · ,B(N)K = JB(1)A(1), · · · ,B(N)A(N)K.

We can also consider the relationship between the Kruskal operator, matricization, and the
Khatri-Rao product. This is the analogue of Proposition 4.3 for the Tucker operator.

Proposition 5.3 Let N = 1, . . . , N . Let A(n) ∈ RIn×R for all n ∈ N.

(a) If R = {r1, . . . , rL} and C = {c1, . . . , cM} partition N, then

X = JA(1),A(2), · · · ,A(N)K ⇔

X(R×C : IN) =
(
A(rL) � · · · �A(r1)

) (
A(cM) � · · · �A(c1)

)T

If R = ∅, then the first multiplicand is replaced by a length-R row vector of all ones; conversely,
if C = ∅, then the second multiplicand is replaced by a length-R column vector of all ones. In
other words,

X(∅×N : IN) ≡ 1T
(
A(N) � · · · �A(1)

)T

and X(N×∅ : IN) ≡
(
A(N) � · · · �A(1)

)
1.

(b) Consequently, for any specific n ∈ N we have

X = JA(1),A(2), · · · ,A(N)K ⇔

X(n) = A(n)
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T

.

19

The norm of the Kruskal operator has a very special form because it can be reduced to summing
the entries of the Hadamard product of N matrices of size R×R.

Proposition 5.4 Let N = 1, . . . , N and A(n) ∈ RIn×R for all n ∈ N. Then∥∥∥ JA(1),A(2), · · · ,A(N)K
∥∥∥2

=

R∑
j=1

R∑
k=1

(
(A(1)TA(1)) ∗ (A(2)TA(2)) ∗ · · · ∗ (A(N)TA(N))

)
jk

Proof. The proof is a matter of using the definition of the Kruskal operator (Definition 5.1) and
rearranging the terms appropriately.∥∥∥ JA(1),A(2), · · · ,A(N)K

∥∥∥2

= 〈 JA(1),A(2), · · · ,A(N)K, JA(1),A(2), · · · ,A(N)K 〉

= 〈
R∑

j=1

a(1)
:j ◦ · · · ◦ a

(N)
:j ,

R∑
k=1

a(1)
:k ◦ · · · ◦ a

(N)
:k 〉

=
R∑

j=1

R∑
k=1

(
a(1)T

:j a(1)
:k

)
· · ·

(
a(N)T

:j a(N)
:k

)

=
R∑

j=1

R∑
k=1

(
A(1)TA(1)

)
jk
· · ·

(
A(N)TA(N)

)
jk

The third step used Proposition 3.10. �

Proposition 5.5 Let X ∈ RI1×I2×···×IN and N = 1, . . . , N and A(n) ∈ RIn×R for all n ∈ N.

(a) The inner product of X and the Kruskal product yields:

〈X, JA(1),A(2), · · · ,A(N)K 〉

=
R∑

r=1

X ×̄1 a(1)
:r ×̄2 a(2)

:r · · · ×̄N a(N)
:r

=
J∑

j=1

K∑
k=1

(
X(R×C : IN) ∗

[(
A(rL) � · · · �A(r1)

) (
A(cM) � · · · �A(c1)

)T
])

jk

= 〈 vec(X),
(
A(N) � · · · �A(1)

)
1 〉

(b) The norm of the difference of X and the Kruskal product is:∥∥∥X− JA(1), . . . ,A(N)K
∥∥∥2

=

‖X ‖2 − 2〈X, JA(1), . . . ,A(N)K 〉+
∥∥∥ JA(1), . . . ,A(N)K

∥∥∥2

5.3 The PARAFAC decomposition

The PARAFAC decomposition of X ∈ RI1×I2×···×IN is given by

X = JA(1),A(2), . . . ,A(N)K.

20

��

����

XI

J

K

=

�� b:1

a:1

c:1

+

�� b:2

a:2

c:2

+ · · ·+

�� b:R

a:R

c:R

Figure 6. Illustration of the PARAFAC decomposition: X =
JA,B,CK

Here A(n) ∈ RIn×R, for n = 1, . . . , N . The PARAFAC decomposition of a three-way tensor is
illustrated in Figure 6.

In the case that R is minimal, then R is the rank of X [29]. It can be the case that R >
min{In | n ∈ N}. For example, the maximal rank of a 2× 2× 2 tensor is 3 [40, 30]. Moreover, the
typical rank of a 2× 2× 2 tensor is 2 (79% of the time) and 3 (21% of the time) [30]. See [9, 10] for
an overview of PARAFAC and related decompositions.

The new Kruskal operator replaces the following options for expressing the PARAFAC decom-
position:

• Elementwise: xi1i2···iN
=

∑R
r=1 a

(1)
i1r · a

(2)
i2r · · · · · a

(N)
iN r ,

• Sum of outer products: X =
∑R

r=1 a(1)
:r ◦ a(2)

:r ◦ · · · ◦ a(N)
:r ,

• Matricized: X(n) = A(n)
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T
, and

• Vectorized: vec(X) =
(
A(N) � · · · �A(1)

)
1 where 1 is a ones vector or length R.

• Slice notation (three-way only): If X = JA,B,CK ∈ RI×J×K , then we can for example write each
frontal slice (see Figure 3) as

X::k = AD(k)BT for k = 1, . . . ,K,

where the R×R diagonal matrix D(k) is defined by D(k) = diag(ck:). Slice notation can be used
in the other directions as well:

Xi:: = Bdiag(ai:)CT for i = 1, . . . , I, and

X:r: = Adiag(bj:)CT for j = 1, . . . , J.

5.4 Computing the PARAFAC decomposition

Faber et al. [16] present an overview of different methods for fitting a PARAFAC decomposition,
and alternating least squares continues to be the workhorse algorithm (i.e., slow but steady) and
thus is our focus here.

Given a tensor X ∈ RI1×I2×···×IN and a desired rank R, the alternating least squares (ALS)
algorithm is used to compute a PARAFAC factorization. In general, it is not known how to choose
R in advance; see, e.g., [11] for more discussion of this issue. Here, we assume that R is known.

As is the case with computing the Tucker approximation, the idea behind ALS is that we solve
for each factor in turn, leaving all the other factors fixed. Thus, the subproblem at each iteration
is as follows: Suppose that all factors A(m), m 6= n, are fixed and solve for B ≡ A(n). This can be

21

cast as the following optimization problem:

min
B∈RIn×R

∥∥∥X− JA(1), . . . ,A(n−1),B,A(n+1), . . . ,A(N)K
∥∥∥ .

From Proposition 5.3(b), this can be expressed in matrix form as

min
B∈RIn×R

∥∥∥∥X(n) −B
(
A(N) � . . .�A(n+1) �A(n−1) � . . .�A(1)

)T
∥∥∥∥ ,

which is a classic least squares problem. Using Proposition 3.2(c), the optimal solution is easily
computed as

BT =
(
A(N) � . . .�A(n+1) �A(n−1) � . . .�A(1)

)†
XT

(n)

= V†
(
A(N) � . . .�A(n+1) �A(n−1) � . . .�A(1)

)T

XT
(n)

where

V = (A(N)TA(N)) ∗ · · · ∗ (A(n+1)TA(n+1)) ∗ (A(n−1)TA(n−1)) ∗ · · · ∗ (A(1)TA(1)).

Note that V is of size R×R and symmetric. An interesting observation is worth making here, which
is that the pseudoinverse can be recast using the Kruskal operator. Define

Z = JA(1), . . . ,A(n−1),V†,A(n+1), . . . ,A(N)K,

which is of size I1 × · · · In−1 ×R× In+1 × · · · × IN . Then we have

B = X(n)ZT
(n) ∈ RIn×R.

A basic ALS algorithm is shown in Algorithm 2.

Algorithm 2 PARAFAC: Alternating Least Squares (ALS)
in: Tensor X of size I1 × I2 × · · · × IN .
in: Desired rank of result: R > 0.
for n = 1, . . . , N do {initialization}

Initialize A(n) in some way (e.g., random or HO-SVD).
Normalize columns of A(n).
B(n) ← A(n)TA(n).

end for
while not converged do {main loop}

for n = 1, . . . , N do
V← B(N) ∗ · · · ∗B(n+1) ∗B(n−1) ∗ · · · ∗B(1).
A(n) ← X(n)

(
A(N) � . . .�A(n+1) �A(n−1) � . . .�A(1)

)T
V†

if n 6= N then
Normalize columns of A(n).

end if
Set B(n) ← A(n)TA(n).

end for
end while
out: A(n) ∈ RIn×R for n = 1, . . . , N such that X ≈ JA(1), . . . ,A(N)K.

5.5 Derivatives of the Kruskal operator

Finally, we consider derivatives of the Kruskal operator. Let N = {1, 2 . . . , N} and A(n) ∈ RIn×R

for all n ∈ N. Define a function F as the Kruskal operator, i.e.,

F(A(1), . . . ,A(N)) = JA(1), . . . ,A(N)K.

22

Consider the derivative of F with respect to A(n). The result is an (N + 2)-way array, such that(
∂F

∂A(n)

)
i1i2···iN inr

= a
(1)
i1r · · · a

(n−1)
in−1r a

(n+1)
in+1r · · · a

(N)
iN r .

Another way to see this is as follows. In matricized form, we have

F(n) = A(n)
(
A(N) � · · · �A(n+1) �A(n−1) �A(1)

)T

.

Using the fact that vec (XYZ) = (ZT ⊗ X)vec (Y) (see, e.g., [17]), we can rewrite the previous
expression as

vec
(
F(n)

)
=

[(
A(N) � · · · �A(n+1) �A(n−1) �A(1)

)
⊗ I

]
vec

(
A(n)

)
where I is the In × In identity matrix. Thus, from matrix calculus, we can define

J(n) ≡
∂vec

(
F(n)

)
∂vec

(
A(n)

) =
(
A(N) � · · · �A(n+1) �A(n−1) �A(1)

)
⊗ I

Note that the size of J(n) is
(∏N

n=1 In

)
× (InR). Thus, each partial derivative has the same number

of rows but a different number of columns. A full Jacobian for vec(F) can be constructed using
the partials, but the rows have to be reordered for consistency [41]. Define P(n) to a permutation
matrix of size

∏N
n=1 In that reorders X(n) to be X(1), i.e.,

X(1) = P(n)X(n).

Then the full Jacobian of vec(F) is of size
(∏N

n=1 In

)
×

(∑N
n=1 InR

)
and defined by

d vec(F)

d

([
vec

(
A(1)

)T · · · vec
(
A(N)

)T
]T

) =
[
J(1) P(2)J(2) · · · P(N)J(N)

]
.

6 Conclusions

We consider two new operators that are useful for expressing and understanding higher-order tensor
decompositions: The Tucker operator is shorthand for all-mode matrix multiplication, and the
Kruskal operator is shorthand for the sum of the rank-1 tensors that are formed as outer products
of the columns of the component matrices. By using these new operators, we can more easily
express and understand the multilinear nature of the Tucker and PARAFAC decompositions because
matricized representations can be avoided or at least easy to switch between. We have gathered
together many commonly known and used properties but expressed them here in their native multi-
linear contexts, avoiding the potential confusion that comes about due to the numerous options for
matricization and vectorization.

We have reviewed the ALS methods for both Tucker and PARAFAC using the new operators,
though there are many approaches including those that handle constraints (see, e.g., [3, 16, 42, 47]).
Moreover, many other approaches rely on gradient information (see, e.g., [34, 41]), so we have
included derivatives of our operators. We also note that MATLAB software exists for working with
tensors [8] and for efficiently computing the various decompositions [5].

23

References

[1] E. Acar, S. A. Çamtepe, M. S. Krishnamoorthy, and B. Yener, Modeling and multiway
analysis of chatroom tensors, in ISI 2005: IEEE International Conference on Intelligence and
Security Informatics, vol. 3495 of Lecture Notes in Computer Science, Springer Verlag, 2005,
pp. 256–268.

[2] C. Andersson and R. Henrion, A general algorithm for obtaining simple structure of core
arrays in N-way PCA with application to fluorimetric data, Comput. Stat. Data. An., 31 (1999),
pp. 255–278.

[3] C. A. Andersson and R. Bro, Improving the speed of multi-way algorithms: Part I: Tucker3,
Chemometr. Intell. Lab., 42 (1998), pp. 93–103.

[4] , Improving the speed of multi-way algorithms: Part II: Compression, Chemometr. Intell.
Lab., 42 (1998), pp. 105–113.

[5] C. A. Andersson and R. Bro, The N-way toolbox for MATLAB, Chemometr. Intell. Lab.,
52 (2000), pp. 1–4. See also http://www.models.kvl.dk/source/nwaytoolbox/.

[6] C. J. Appellof and E. R. Davidson, Strategies for analyzing data from video fluorometric
monitoring of liquid chromatographic effluents, Anal. Chem., 53 (1981), pp. 2053–2056.

[7] B. W. Bader. private communication, 2005.

[8] B. W. Bader and T. G. Kolda, Algorithm xxx: MATLAB tensor classes for fast algorithm
prototyping, ACM Transactions on Mathematical Software. To appear. See also http://csmr.
ca.sandia.gov/∼tgkolda/TensorToolbox.

[9] R. Bro, PARAFAC. tutorial and applications, Chemometr. Intell. Lab., 38 (1997), pp. 149–171.

[10] , Multi-way analysis in the food industry. models, algorithms, and applications, PhD thesis,
University of Amsterdam, 1998. Available at http://www.models.kvl.dk/research/theses/.

[11] R. Bro and H. A. L. Kiers, A new efficient method for determining the number of components
in parafac models, J. Chemometr., 17 (2003), pp. 274–286.

[12] J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional
scaling via an N-way generalization of ‘Eckart-Young’ decomposition, Psychometrika, 35 (1970),
pp. 283–319.

[13] B. Chen, A. Petropolu, and L. De Lathauwer, Blind identification of convolutive MIM
systems with 3 sources and 2 sensors, Applied Signal Processing, (2002), pp. 487–496. (Special
Issue on Space-Time Coding and Its Applications, Part II).

[14] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value de-
composition, SIAM J. Matrix Anal. A., 21 (2000), pp. 1253–1278.

[15] , On the best rank-1 and rank-(R1, R2, . . . , RN) approximation of higher-order tensors,
SIAM J. Matrix Anal. A., 21 (2000), pp. 1324–1342.

[16] N. K. M. Faber, R. Bro, and P. K. Hopke, Recent developments in CANDE-
COMP/PARAFAC algorithms: a critical review, Chemometr. Intell. Lab., 65 (2003), pp. 119–
137.

[17] P. L. Facker, Notes on matrix calculus. Available from http://www4.ncsu.edu/∼pfackler/
MatCalc.pdf, Sept. 2005.

[18] V. S. Grigorascu and P. A. Regalia, Fast Reliable Algorithms for Matrices with Structure,
SIAM, 1999, ch. Tensor displacement structures and polyspectral matching, pp. 245–276.

24

http://dx.doi.org/10.1007/11427995_21
http://dx.doi.org/10.1007/11427995_21
http://dx.doi.org/10.1016/S0167-9473(99)00017-1
http://dx.doi.org/10.1016/S0167-9473(99)00017-1
http://dx.doi.org/10.1016/S0169-7439(98)00010-0
http://dx.doi.org/10.1016/S0169-7439(98)00011-2
http://www.models.kvl.dk/source/nwaytoolbox/
http://www.models.kvl.dk/source/nwaytoolbox/
http://dx.doi.org/10.1021/ac00236a025
http://dx.doi.org/10.1021/ac00236a025
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox
http://dx.doi.org/10.1016/S0169-7439(97)00032-4
http://www.models.kvl.dk/research/theses/
http://dx.doi.org/10.1002/cem.801
http://dx.doi.org/10.1002/cem.801
http://epubs.siam.org/sam-bin/dbq/article/30569
http://epubs.siam.org/sam-bin/dbq/article/30569
http://epubs.siam.org/sam-bin/dbq/article/34699
http://dx.doi.org/10.1016/S0169-7439(02)00089-8
http://dx.doi.org/10.1016/S0169-7439(02)00089-8
http://www4.ncsu.edu/~pfackler/MatCalc.pdf
http://www4.ncsu.edu/~pfackler/MatCalc.pdf

[19] R. A. Harshman, Foundations of the PARAFAC procedure: models and conditions for an
“explanatory” multi-modal factor analysis, UCLA working papers in phonetics, 16 (1970), pp. 1–
84.

[20] , An index formulism that generalizes the capabilities of matrix notation and algebra to
n-way arrays, J. Chemometr., 15 (2001), pp. 689–714.

[21] R. Henrion, Body diagonalization of core matrices in three-way principal components analysis:
Theoretical bounds and simulation, J. Chemometr., 7 (1993), pp. 477–494.

[22] , N -way principal component analysis theory, algorithms and applications, Chemometr.
Intell. Lab., 25 (1994), pp. 1–23.

[23] H. A. Kiers, Joint orthomax rotation of the core and component matrices resulting from three-
mode principal components analysis, J. Classif., 15 (1998), pp. 245 – 263.

[24] H. A. L. Kiers, Towards a standardized notation and terminology in multiway analysis, J.
Chemometr., 14 (2000), pp. 105–122.

[25] T. G. Kolda, Orthogonal tensor decompositions, SIAM J. Matrix Anal. A., 23 (2001), pp. 243–
255.

[26] T. G. Kolda and B. W. Bader, The TOPHITS model for higher-order web link analysis, in
Workshop on Link Analysis, Counterterrorism and Security, 2006.

[27] T. G. Kolda, B. W. Bader, and J. P. Kenny, Higher-order web link analysis using multi-
linear algebra, in ICDM 2005: Proceedings of the 5th IEEE International Conference on Data
Mining, IEEE Computer Society, 2005, pp. 242–249.

[28] P. M. Kroonenberg and J. De Leeuw, Principal component analysis of three-mode data
by means of alternating least squares algorithms, Psychometrika, 45 (1980), pp. 69–97.

[29] J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with ap-
plication to arithmetic complexity and statistics, Linear Algebra Appl., 18 (1977), pp. 95–138.

[30] J. B. Kruskal, Rank, decomposition, and uniqueness for 3-way and N -way arrays, in Multiway
Data Analysis, R. Coppi and S. Bolasco, eds., Elsevier Science Publishers B.V., 1989.

[31] R. P. McDonald, A simple comprehensive model for the analysis of covariance structures,
Brit. J. Math. Stat. Psy., 33 (1980), p. 161. Cited in [10].

[32] M. M lrup, L. K. Hansen, C. S. Herrmann, J. Parnas, and S. M. Arnfred, Parallel
factor analysis as an exploratory tool for wavelet transformed event-related eeg, NeuroImage,
(2005). In Press, Corrected Proof, Available online 26 September 2005.

[33] D. Muti and S. Bourennane, Multidimensional filtering based on a tensor approach, Signal
Process., 85 (2005), pp. 2338–2353.

[34] P. Paatero, The multilinear engine - a table-driven, least squares program for solving multi-
linear problems, including the n-way parallel factor analysis model, J. Comput. Graph. Stat., 8
(1999), pp. 854–888.

[35] C. R. Rao and S. Mitra, Generalized inverse of matrices and its applications, Wiley, New
York, 1971. Cited in [10].

[36] B. Savas, Analyses and tests of handwritten digit recognition algorithms, master’s thesis,
Linkoping University, Sweden, 2003.

[37] A. Smilde, R. Bro, and P. Geladi, Multi-way analysis: applications in the chemical sci-
ences, Wiley, 2004.

25

http://publish.uwo.ca/~harshman/wpppfac0.pdf
http://publish.uwo.ca/~harshman/wpppfac0.pdf
http://dx.doi.org/10.1002/cem.665
http://dx.doi.org/10.1002/cem.665
http://dx.doi.org/10.1002/cem.1180070604
http://dx.doi.org/10.1002/cem.1180070604
http://dx.doi.org/10.1007/s003579900033
http://dx.doi.org/10.1007/s003579900033
http://dx.doi.org/10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
http://dx.doi.org/10.1137/S0895479800368354
http://www.cs.rit.edu/~amt/linkanalysis06/accepted/21.pdf
http://dx.doi.org/10.1109/ICDM.2005.77
http://dx.doi.org/10.1109/ICDM.2005.77
http://dx.doi.org/doi:10.1016/j.neuroimage.2005.08.005
http://dx.doi.org/doi:10.1016/j.neuroimage.2005.08.005
http://dx.doi.org/10.1016/j.sigpro.2004.11.029
http://www.mai.liu.se/~besav/thesis.html

[38] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen, CubeSVD: a novel approach to
personalized Web search, in WWW 2005: Proceedings of the 14th international conference on
World Wide Web, 2005, pp. 382–390.

[39] J. Ten Berge, J. De Leeuw, and P. M. Kroonenberg, Some additional results on prin-
cipal components analysis of three-mode data by means of alternating least squares algorithms,
Psychometrika, 52 (1987), pp. 183–191.

[40] J. M. F. Ten Berge, H. A. L. Kiers, and J. de Leeuw, Explicit CANDE-
COMP/PARAFAC solutions for a contrived 222 array of rank three, Psychometrika, 53 (1988),
pp. 579–583.

[41] G. Tomasi, Use of the properties of the Khatri-Rao product for the computation of Jacobian,
Hessian, and gradient of the PARAFAC model under MATLAB. 2005.

[42] G. Tomasi and R. Bro, A comparison of algorithms for fitting the PARAFAC model, Comput.
Stat. Data. An., (2005).

[43] L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31
(1966), pp. 279–311.

[44] C. F. Van Loan, The ubiquitous Kronecker product, J. Comput. Appl. Math., 123 (2000),
pp. 85–100.

[45] M. A. O. Vasilescu and D. Terzopoulos, Multilinear analysis of image ensembles: Ten-
sorFaces, in ECCV 2002: 7th European Conference on Computer Vision, vol. 2350 of Lecture
Notes in Computer Science, Springer-Verlag, 2002, pp. 447–460.

[46] H. Wang and N. Ahuja, Facial expression decomposition, in ICCV 2003: 9th IEEE Interna-
tional Conference on Computer Vision, vol. 2, 2003, pp. 958–965.

[47] T. Zhang and G. H. Golub, Rank-one approximation to high order tensors, SIAM J. Matrix
Anal. A., 23 (2001), pp. 534–550.

26

http://dx.doi.org/10.1145/1060745.1060803
http://dx.doi.org/10.1145/1060745.1060803
http://dx.doi.org/10.1007/BF02294409
http://dx.doi.org/10.1007/BF02294409
http://dx.doi.org/10.1016/j.csda.2004.11.013
http://dx.doi.org/10.1016/S0377-0427(00)00393-9
http://www.springerlink.com/link.asp?id=np5dg32mvk11hd8a
http://www.springerlink.com/link.asp?id=np5dg32mvk11hd8a
http://dx.doi.org/10.1137/S0895479899352045

A LATEX formatting

The double brackets used to denote the Tucker and Kruskal operators are produced as follows:

\usepackage{stmaryrd} % provides \llbracket and \rrbracket
$\llbracket ... \rrbracket$ % here are the brackets

The boldface Euler script letters that are used to denote tensors are produced as follows:

\usepackage{amsmath} % provides \boldsymbol
\usepackage[mathscr]{eucal} % provides \mathscr (Euler script)
$\boldsymbol{\mathscr{X}}$ % here’s a tensor X

27

DISTRIBUTION:

2 MS 9018
Central Technical Files, 8945-1

2 MS 0899
Technical Library, 4536

1 MS 0188
D. Chavez, LDRD Office, 1011

28

	Front Page
	Abstract
	Table of Contents
	1 Introduction
	2 Notation
	3 Review of standard operations
	3.1 Matrix operations
	3.2 The outer product of vectors
	3.3 Tensor multiplication: the n-mode product
	3.4 Matricization of a tensor
	3.5 Norm and inner product of a tensor

	4 The Tucker operator
	4.1 Definition of the Tucker operator
	4.2 Tucker operator properties
	4.3 The Tucker decomposition
	4.4 Finding an optimal rank-(J1,J2,…,JN) approximation
	4.5 Derivatives

	5 The Kruskal operator
	5.1 Definition of the Kruskal operator
	5.2 Kruskal operator properties
	5.3 The PARAFAC decomposition
	5.4 Computing the PARAFAC decomposition
	5.5 Derivatives of the Kruskal operator

	6 Conclusions
	References
	A LaTeX formatting

